Exercise 7

Experiments show that if the chemical reaction

$$
\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

takes place at $45^{\circ} \mathrm{C}$, the rate of reaction of dinitrogen pentoxide is proportional to its concentration as follows:

$$
-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=0.0005\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

(See Example 3.7.4.)
(a) Find an expression for the concentration $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ after t seconds if the initial concentration is C.
(b) How long will the reaction take to reduce the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ to 90% of its original value?

Solution

Part (a)
Multiply both sides by -1 .

$$
\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=-0.0005\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

Divide both sides by $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$.

$$
\frac{1}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]} \frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=-0.0005
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln \left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]=-0.0005
$$

The function you take a derivative of to get -0.0005 is $-0.0005 t+D$, where D is any constant.

$$
\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=-0.0005 t+D
$$

Exponentiate both sides to get $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$.

$$
\begin{aligned}
e^{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]} & =e^{-0.0005 t+D} \\
{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] } & =e^{D} e^{-0.0005 t}
\end{aligned}
$$

Use the fact that the initial concentration is C to determine e^{D}.

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](0)=e^{D} e^{-0.0005(0)}=C \quad \rightarrow \quad e^{D}=C
$$

Therefore, the concentration is

$$
\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](t)=C e^{-0.0005 t}
$$

Part (b)

In order to find how long it'll take the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ to reduce to 90% of its original value, set $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](t)=0.9 \mathrm{C}$ and solve the equation for t.

$$
\begin{gathered}
{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](t)=0.9 C} \\
C e^{-0.0005 t}=0.9 C \\
e^{-0.0005 t}=0.9 \\
\ln e^{-0.0005 t}=\ln 0.9 \\
-0.0005 t=\ln 0.9 \\
t=-\frac{\ln 0.9}{0.0005} \approx 210.721 \text { seconds }
\end{gathered}
$$

